首页 > 师资队伍 > 副教授 > 肖华攀

肖华攀

副教授
电子邮箱:xiaohp6@安博体育.安博体育.edu.cn

个人简介

肖华攀,安博体育副教授,硕士生导师、博士生导师。

长期从事脆性光电材料(玻璃、晶体、陶瓷等)精密/超精密加工及检测技术研究,尤其在加工表面和亚表面损伤的形成机理、预测理论、检测方法与抑制技术等方面具有较为丰富的研究经验;主持国家自然科学基金等科研项目5项,参与国家自然科学基金、国家重点研发计划、香港创新及科技基金等科研项目6项;发表学术论文50余篇,其中在Int J Mech SciJ Mater Process TechnolPrecis EngInt J Precis Eng Manuf TechnolOpt ExpressOpt Laser TechnolUltrasonicsStruct Health MonitTribol IntCeram IntSCI期刊上发表论文35篇,授权/申请国家发明专利15项;获亚洲精密工程与纳米技术学会“青年研究奖”(亚洲区每2年约8名)、国家公派出国留学奖学金、西安交大优秀研究生、省优秀硕士学位论文等荣誉。

招生名额充足,长期招收机械工程、光学工程、力学、声学、计算机科学与技术、材料科学与工程等专业的硕士研究生、博士研究生和博士后。

欢迎从事精密/超精密加工及检测相关领域的高校、科研院所与企业来学习交流合作。

 

电子邮箱:xiaohp6@安博体育.安博体育.edu.cn

通讯地址:广东省深圳市光明安博体育66号 中山大学理学园-西517

学术主页http://www.researchgate.net/profile/Huapan-XiaoResearchGate

学术主页http://scholar.google.com/citations?hl=zh-CN&user=AH7zktAAAAAJGoogle Scholar

 

教育工作经历

2024.05 - 至今,安博体育,副教授

2021.11 - 2024.05,香港理工大学超精密加工技术国家重点实验室,博士后研究员

2020.07 - 2021.11,重庆大学机械与运载工程学院,弘深青年教师

2015.09 - 2020.03,西安交通大学机械工程学院,博士

2018.10 - 2019.10,亚利桑那大学Wyant光学科学学院,CSC联合培养博士

 

主讲课程

《安博体育》、《ABSPORTS》、《ABSPORTS》

 

研究特色

 · (声////磁等)能场辅助精密/超精密磨粒加工技术

 · 多能场辅助湿法刻蚀技术

 · (基于线性/非线性超声、拉曼光谱等)损伤缺陷无损检测

 · (基于深度学习、数据融合、机器视觉等)损伤缺陷智能检测

 

学术兼职

 · 17届中日超精密加工国际会议(CJUMP 2023)组委会委员、分会场主席

 · 10届亚洲精密工程及纳米技术国际会议(ASPEN 2023)组委会委员、分会场主席

 · 8届亚太光学制造会议暨第3届国际先进光学制造青年科学家论坛(APCOM 2023 & YSAOM 2023)组委会委员、邀请报告

 · Frontiers in MaterialsIF: 3.985)、MicromachinesIF: 3.523)客座编辑

 · International Journal of Mechanical Sciences, Journal of Materials Processing Technology, Precision Engineering, Ceramic International, Measurement, Scientific Reports,  Journal of Non-Crystalline Solids, Optics Express, Optical Materials Express, Optics Communications, Applied Optics, Optical Engineering, Materials Today Communications,  Applied Physics B等近20SCI 期刊审稿人

 

期刊论文

[1]Zhou P, Cheung CF, Xiao H, Wang C. The chip generation and removal mechanisms of thermal-assisted polishing monocrystalline 4 H-SiC. Tribol Int 2024;194:109504.

[2]Xiao H, Yin S, Cheung CF, Wang C. Cracking behavior during scratching brittle materials with different-shaped indenters. Int J Mech Sci 2024;268:109041.

[3]Wu H, Luo S, Chen M, Xiao H, Wang T, He C. Super-resolution image restoration for microlens array imaging system. Opt Laser Technol 2024;170:110139.

[4]Wu H, Zeng L, Chen M, Wang T, He C, Xiao H, Luo S. Weak surface defect detection for production-line plastic bottles with multi-view imaging system and LFF YOLO. Opt Lasers Eng 2024;181:108369.

[5]Deng L, Luo S, He C, Xiao H, Wu H. Underwater small and occlusion object detection with feature fusion and global context decoupling head-based YOLO. Multimed Syst 2024;30:208.

[6]Lu Y, Mou X, Xiao H, Li K, Wang C. Surface integrity of binderless WC using dry electrical discharge assisted grinding. Int J Precis Eng Manuf Technol 2024.

[7]Yin S, Xiao H, Xu C, Deng M, Kundu T. Theoretical error formation and evaluation of acoustic source localization for cluster-based techniques. Ultrasonics 2023;132:106982.

[8]Xiao H, Zhang F, Yin S, Cheung CF, Wang C. Subsurface damage model in single and double scratching of fused silica with a blunt indenter. Int J Mech Sci 2023;250:108309.

[9]Xiao H, Yin S, Cheung CF, Zhang F, Cao H, Wang C. Material removal behavior analysis of ZnSe crystal during side-forward nanoscratching. Int J Mech Sci 2023;241:107968.

[10]Wu H, Hao X, Wu J, Xiao H, He C, Yin S. Deep learning-based image super-resolution restoration for mobile infrared imaging system. Infrared Phys Technol 2023;132:104762.

[11]Liu Y, Huang X, Cao H, Wang J, Xiao H. Model of surface texture for honed gear considering motion path and geometrical shape of abrasive particle. Chin J Mech Eng 2023;36:96.

[12]Guo C, Zhou A, He J, Xiao H, Li D. An investigation in sub-millimeter channel fabrication by the non-aqueous electrolyte jet machining of Zr-Based bulk metallic glasses. Micromachines 2023;14:2232.

[13]Gao R, Jiang C, Ye H, Xiao H, Cheung CF, Wang C. Exploring the potential of the fabrication of large-size mirror facet for semiconductor laser bar utilizing mechanical cleavage. Ceram Int 2023;49:21883-21891.

[14]Yin S, Xiao H, Xu C, Wang J, Deng M, Kundu T. Microcrack localization using nonlinear Lamb waves and cross-shaped sensor clusters. Ultrasonics 2022;124:106770.

[15]Yin S, Xiao H, Wu H, Wang C, Cheung CF. Image-processing-based model for the characterization of surface roughness and subsurface damage of silicon wafer in diamond wire sawing. Precis Eng 2022;77:263-274.

[16]Yin S, Xiao H, Kang W, Wu H, Liang R. Shoulder damage model and its application for single point diamond machining of ZnSe crystal. Materials 2022;15:233.

[17]Xiao H, Yin S, Wu H, Wang H, Liang R. Theoretical model and digital extraction of subsurface damage in ground fused silica. Opt Express 2022;30:17999-18017.

[18]Kang W, Seigo M, Xiao H, Wang D, Liang R. Experimental studies on fabricating lenslet array with slow tool servo. Micromachines 2022;13:1564.

[19]Yin S, Xiao H, Cui Z, Kundu T. Rapid localization of acoustic source using sensor clusters in 3D homogeneous and heterogeneous structures. Struct Health Monit 2021;20:1145-1155.

[20]Xiao H, Yin S, Wang H, Liu Y, Wu H, Liang R, Cao H. Models of grinding-induced surface and subsurface damages in fused silica considering strain rate and micro shape/geometry of abrasive. Ceram Int 2021;47:24924-24941.

[21]Wu H, Zhao G, Chen M, Cheng L, Xiao H, Xu L, Wang D, Liang J, Xu Y. Hybrid neural network-based adaptive computational ghost imaging. Opt Lasers Eng 2021;140:106529.

[22]Wu H, Wu W, Chen M, Luo S, Zhao R, Xu L, Xiao H, Cheng L, Zhang X, Xu Y. Computational ghost imaging with 4-step iterative rank minimization. Phys Lett A 2021;394:127199.

[23]Wang T, Chen M, Wu H, Xiao H, Luo S, Cheng L. Underwater compressive computational ghost imaging with wavelet enhancement. Appl Opt 2021;60:6950-6957.

[24]李雨菡, 肖华攀, 王海容, 梁晓雅, 李昌朋, 叶鑫, 蒋晓东, 苗心向, 姚彩珍, 孙来喜. 湿法刻蚀处理熔石英光学元件研究进展. 激光与光电子学进展 2021;58:1516026.

[25]Zhang Y, Yin S, Liang R, Luo H, Xiao H, Yuan N. New testing and calculation method for determination viscoelasticity of optical glass. Opt Express 2020;28:626-640.

[26]Wu H, Zhao G, Wang R, Xiao H, Wang D, Liang J, Cheng L, Liang R. Computational ghost imaging system with 4-connected-region-optimized Hadamard pattern sequence. Opt Lasers Eng 2020;132:106105.

[27]Wu H, Wang R, Zhao G, Xiao H, Wang D, Liang J, Tian X, Cheng L, Zhang X. Sub-Nyquist computational ghost imaging with deep learning. Opt Express 2020;28:3846-3853.

[28]Wu H, Wang R, Zhao G, Xiao H, Liang J, Wang D, Tian X, Cheng L, Zhang X. Deep-learning denoising computational ghost imaging. Opt Lasers Eng 2020;134:106183.

[29]Wu H, Wang R, Huang Z, Xiao H, Liang J, Wang D, Tian X, Wang T, Cheng L. Online adaptive computational ghost imaging. Opt Lasers Eng 2020;128:106028.

[30]Xiao H, Wang H, Yu N, Liang R, Tong Z, Chen Z, Wang J. Evaluation of fixed abrasive diamond wire sawing induced subsurface damage of solar silicon wafers. J Mater Process Technol 2019;273:116267.

[31]Xiao H, Liang R, Spires O, Wang H, Wu H, Zhang Y. Evaluation of surface and subsurface damages for diamond turning of ZnSe crystal. Opt Express 2019;27:28364.

[32]Xiao H, Chen Z, Wang H, Wang J, Zhu N. Effect of grinding parameters on surface roughness and subsurface damage and their evaluation in fused silica. Opt Express 2018;26:4638-4655.

[33]Xiao H, Wang H, Fu G, Chen Z. Surface roughness and morphology evolution of optical glass with micro-cracks during chemical etching. Appl Opt 2017;56:702-711.

[34]Xiao H, Wang H, Chen Z, Fu G, Wang J. Effect of brittle scratches on transmission of optical glass and its induced light intensification during the chemical etching. Opt Eng 2017;56:1.

 

发明专利

[1]一种基于图像处理的线锯切割单晶硅片全表面线粗糙度预测方法

[2]基于硅基集成空芯光波导的多组分气体检测方法及装置

[3]光学元件亚表面损伤的化学刻蚀测量方法、辅助实验装置及试验方法

[4]厚度可调的切片装置

[5]无动力捕获装置及其使用方法

[6]一种盘式预磨机装夹装置

[7]一种金相显微试样预磨机

[8]伸缩式拉线采集装置

[9]一种具有防水倒灌功能的水下动力增压排气装置

[10]组合式联轴器